
Source Coding

Overview

Information
Source Source

Encode
Channel
Encode

Pulse
Modulate

Encrypt

Bandpass
Modulate

Multiplex

Multiple
Access

Frequency
Spreading

XMT

Source Coding – eliminate redundancy in the data, send same
information in fewer bits

Channel Coding – Detect/Correct errors in signaling and
improve BER

Source Coding
• Goal is to find an efficient description of information

sources
– Reduce required bandwidth

– Reduce memory to store

• Memoryless –If symbols from source are independent,
one symbol does not depend on next

• Memory – elements of a sequence depend on one
another, e.g. UNIVERSIT_?, 10-tuple contains less
information since dependent

   memory no memory

H X H X

4

Source Coding (II)

• This means that it’s more efficient to code
information with memory as groups of
symbols

   memory no memory
H X H X

5

Desirable Properties

• Length

– Fixed Length – ASCII

– Variable Length – Morse Code, JPEG

• Uniquely Decodable – allow user to invert
mapping to the original

• Prefix-Free – No codeword can be a prefix of any
other codeword

• Average Code Length (ni is code length of ith
symbol)

 i i
i

n n P X

6

Uniquely Decodable and Prefix Free Codes

• Uniquely decodable?
– Not code 1

– If “10111” sent, is code 3
‘babbb’or ‘bacb’? Not
code 3 or 6

• Prefix-Free
– Not code 4,

– prefix contains ‘1’

• Avg Code Length
– Code 2: n=2

– Code 5: n=1.23

Xi P(Xi)

a 0.73

b 0.25

c 0.02

Sym

bol

Code

1

Code

2

Code

3

Code

4

Code

5

Code

6

a 00 00 0 1 1 1

b 00 01 1 10 00 01

c 11 10 11 100 01 11

Huffman Code

• Characteristics of Huffman Codes:

– Prefix-free, variable length code that can achieve
the shortest average code length for an alphabet

– Most frequent symbols have short codes

• Procedure

– List all symbols and probabilities in descending
order

– Merge branches with two lowest probabilities,
combine their probabilities

– Repeat until one branch is left

Huffman Code Example

0.4

0.2

0.1

0.1

0.1

0.1

a

b

c

d

e

f

0.2

0.4

0.2

0.2

0.1

0.1 0.2

0.4

0.2

0.2

0.2 0.4

0.4

0.4

0.2 0.6

0.6

0.4
1.0

1

0

1

0
1

0

1

0 1

0

The Code:
A 11
B 00
C 101
D 100
E 011
F 010

2.4n 

Compression
Ratio:
3.0/2.4=1.25
Entropy:
2.32

Example:

• Consider a random vector X = {a, b, c}
with associated probabilities as listed
in the Table

• Calculate the entropy of this symbol
set

• Find the Huffman Code for this symbol
set

• Find the compression ratio and
efficiency of this code

Xi P(Xi)

a 0.73

b 0.25

c 0.02

Extension Codes

• Combine alphabet
symbols to increase
variability

• Try to combine very
common 2,3 letter
combinations, e.g.:
th,sh, ed, and,
the,ing,ion

Xi P(Xi)

aa 0.5329

ab 0.1825

ba 0.1825

bb 0.0625

ac 0.0146

ca 0.0146

bc 0.0050

cb 0.0050

cc 0.0002

Code ni niP(Xi)

1 1 0.5329

00 2 0.3650

011 3 0.5475

0101 4 0.2500

01000 5 0.0730

010011 6 0.0876

0100100 7 0.0350

01001011 8 0.0400

01001010 8 0.0016 1.9326 / 2

0.9663 /

n bits symbols

bit symbol





11

Lempel-Ziv (ZIP) Codes

• Huffman codes have some shortcomings
– Know symbol probability information a priori

– Coding tree must be known at coder/decoder

• Lempel-Ziv algorithm use text itself to
iteratively construct a sequence of variable
length code words

• Used in gzip, UNIX compress, LZW algorithms

12

Lempel-Ziv Algorithm

• Look through a code dictionary with already
coded segments

– If matches segment,

• send <dictionary address, next character> and store
segment + new character in dictionary

– If no match,

• store in dictionary, send <0,symbol>

13

LZ Coding: Example

• Encode [a b a a b a b b b b b b b a b b b b b a]

Code Dictionary
Address Contents Encoded Packets

1 a < 0 , a >

2 b < 0 , b >

3 aa < 1 , a >

4 ba < 2 , a >

5 bb < 2 , b >

6 bbb < 5 , b >

7 bba < 5 , a >

8 bbbb < 6 , b >

 < 4 , - >

Note: 9 code
words, 3 bit
address, 1 bit
for new
character,

